Меню сайта |
|
 |
|
Исследование устойчивости функционирования объектов экономики в ЧС. Планирование мероприятий ГО на объекте
| 23.12.2018, 13:44 |
Прогноз землетрясений - наиболее важная проблема, которой занимаются ученые во многих странах мира. Однако, несмотря на все усилия, этот вопрос еще далек от разрешения. Прогнозирование землетрясений включает в себя как выявление их предвестников, так и сейсмическое районирование, то есть выделение областей, в которых можно ожидать землетрясение определенной магнитуды или бальности. Предсказание землетрясений состоит из долгосрочного прогноза на десятки лет, среднесрочного прогноза на несколько лет, краткосрочного на несколько недель или первые месяцы и объявление непосредственной сейсмической тревоги. Наиболее впечатляющий достоверный прогноз землетрясения был сделан зимой 1975 года в городе Хайчен на северо-востоке Китая. Наблюдая этот район в течение нескольких лет разными методами, был сделан вывод о возможном сильном землетрясении в ближайшем будущем. Возрастание числа слабых землетрясений позволило объявить всеобщую тревогу 4 февраля в 14 ч. Людей вывели на улицы, были закрыты магазины, предприятия и подготовлены спасательные команды. В 19 ч 36 мин произошло сильное землетрясение с магнитудой 7,3, город Хайчен подвергся разрушению, жертв было мало. Но даже наряду с другими удачными предсказаниями землетрясений они скорее исключение, чем правило.
Сейсмическое районирование разного масштаба и уровня проводится на основании учета множества особенностей: геологических, в частности тектонических, сейсмологических, физических и др. Составленные и утвержденные карты обязаны учитывать все строительные организации несмотря на то, что увеличение предполагаемой силы землетрясения хотя бы на 1 балл влечет за собой многократное удорожание строительства, так как связано с необходимостью дополнительного укрепления построек.
Сейсмическое районирование территории предполагает несколько уровней от мелко- к крупномасштабным. Например, для городов или крупных промышленных предприятий составляют детальные карты микросейсмического районирования, на которых необходимо учитывать особенности геологического строения небольших участков, состав грунтов, характер их обводненности, наличие скальных выступов горных пород и их типы. Наименее благоприятными являются обводненные грунты (возникновение гидравлического удара), рыхлые суглинки, лессы, обладающие большой просадочностью. Аллювиальные равнины более опасны при землетрясении, чем выходы скальных пород. Все это надо учитывать при строительстве и проектировании зданий, гидроэлектростанций, заводов.
Сейсмостойкому строительству во всех странах уделяется очень большое внимание, особенно для таких ответственных объектов, как атомные электростанции, гидроэлектростанции, химические и нефтеперерабатывающие заводы. Проектирование и строительство зданий в сейсмоопасных зонах требуют сделать их устойчивыми к землетрясениям. Как метко отмечено в книге Дж. Гира и Х. Шаха (1988 год), самое главное в проектировании сейсмостойких зданий - это "связать" здание, то есть соединить все элементы постройки: балки, колонны, стена и плиты в единую прочную, но вместе с тем и гибкую конструкцию, способную противостоять колебаниям грунта. Благодаря таким мерам в Мехико строят здания по 35-45 этажей, а в Токио, высокосейсмичном районе, - даже в 60 этажей. Такие постройки обладают гибкостью, то есть способностью качаться, изгибаться, как деревья при сильном ветре, но не разрушаться. Хрупкие же материалы, например кирпич или кирпич-сырец, разрушаются сразу. Не забудем также, что в Японии много атомных электростанций, но конструкция их зданий рассчитана на очень сильные землетрясения. Старые постройки стягивают стальными обручами или тросами, укрепляют снаружи железобетонной рамой, скрепляют арматурой, проходящей через все стены. Существующие нормы и правила не в состоянии, конечно, полностью обеспечить сохранность объектов при землетрясении, но они значительно снижают последствия ударов стихии и поэтому требуют неукоснительного выполнения.
Существует большое количество разнообразных предвестников землетрясений, начиная от собственно сейсмических, геофизических и кончая гидродинамическими и геохимическими. Можно проиллюстрировать их несколькими примерами. Так, сильные землетрясения в противоположность слабым в конкретном районе происходят через значительные промежутки времени, измеряемые десятками и сотнями лет, так как после разрядки напряжений необходимо время для их возрастания до новой критической величины, а скорость накопления напряжений по Г.А. Соболеву не превышает 1 кг/см2 в год. К. Касахара в 1985 году показал, что для разрушения горной породы необходимо накопить упругую энергию в 103 эрг/см3 и объем горных пород, высвобождающий энергию при землетрясении, связан прямой зависимостью с количеством этой энергии. Следовательно, чем больше магнитуда землетрясения, а соответственно и энергия, тем больше будет временной интервал между сильными землетрясениями. Данные по сейсмически активной Курило-Камчатской островной дуге позволили С.А. Федотову установить повторяемость землетрясений с магнитудой М = 7,75 через 140 ? 60 лет. Иными словами, выявляется некоторая периодичность или сейсмический цикл, позволяющий давать хотя и очень приблизительный, но долгосрочный прогноз.
Сейсмические предвестники включают рассмотрение группирования роев землетрясений; уменьшение землетрясений вблизи эпицентра будущего сильного землетрясения; миграции очагов землетрясений вдоль крупного сейсмоактивного разрыва; асейсмические скольжения по плоскости разрыва на глубине, возникающие перед будущим внезапным сдвигом; ускорение вязкого течения в очаговой области; образование трещин и подвижек по ним в области концентрации напряжений; неоднородность строения земной коры в зоне сейсмичных разрывов. Особый интерес в качестве предвестников представляют форшоки, предваряющие, как правило, основной сейсмический удар. Однако главная непреодоленная сложность заключается в трудности распознавания настоящих форшоков на фоне рутинных сейсмических событий.
В качестве геофизических предвестников используют точные измерения деформаций и наклонов земной поверхности с помощью специальных приборов - деформаторов. Перед землетрясениями скорость деформаций резко возрастает, как это было перед землетрясением в Ниигата (Япония) в 1964 году. К предвестникам относится также изменение скоростей пробега продольных и поперечных сейсмических волн в очаговой области непосредственно перед землетрясением. Любое изменение напряженно-деформированного состояния земной коры сказывается на электрическом сопротивлении горных пород, кото-рое можно измерять при большой силе тока до глубины 20 км. То же относится и к вариациям магнитного поля, так как напряженное состояние пород влияет на колебания величины пьезомагнитного эффекта в магнитных минералах.
Довольно надежны в качестве предвестников измерения колебания уровня подземных вод, поскольку любое сжатие в горных породах приводит к повышению этого уровня в скважинах и колодцах. С помощью гидрогеодеформационного метода были сделаны успешные краткосрочные предсказания: например, в Японии в Изу-Ошиме 14 января 1978 года, в Ашхабаде перед сильным землетрясением 16 сентября 1978 года с М = 7,7. В качестве предвестников используется также изменение содержания родона в подземных водах и скважинах.
Все многообразие предвестников землетрясений неоднократно анализировалось с целью выявления общих закономерностей и устранения ошибок. Геофизик Т. Рикитаки провел статистический анализ связей длительности аномалий Т и ее амплитуды А и ожидаемой магнитуды М, выделив три класса предвестников. Для среднесрочных предвестников он получил уравнение
log DТ = аМ - b,
где а = 0,76; b = -1,83, а Т - сутки. При М = 5-7 время проявления предвестников составляет первые месяцы - первые годы.
2. Режимы функционирования РСЧС
Режимы функционирования РСЧС
Функционирование РСЧС осуществляется в зависимости от обстановки, масштаба прогнозируемой или возникшей ЧС по трем режимам.
В режиме повседневной деятельности при нормальной производственно-промышленной, радиационной, химической, биологической, сейсмической и гидрометеорологической обстановке осуществляются следующие мероприятия:
- наблюдение и контроль за состоянием окружающей природной среды (ОПС), обстановкой на потенциально опасных объектах (ПОО) и на прилегающих к ним территориях;
- планирование и выполнение целевых и научно-технических программ и мер по предупреждению ЧС, обеспечению безопасности и защиты населения, сокращению возможных потерь и ущерба, а также по повышению устойчивости функционирования объекта экономики (ПУФ ОЭ) и отраслей экономики в ЧС;
- совершенствование органов управления РСЧС, сил и средств к действиям при ЧС, организация обучения населения способам защиты и действиям при ЧС;
- создание и пополнение резервов финансовых и материальных ресурсов для ликвидации последствий ЧС;
- осуществление целевых видов страхования.
В режиме повышенной готовности при ухудшении производственно-промышленной, радиационной, химической, биологической, сейсмической и гидрометеорологической обстановки, при получении прогноза о возможности возникновения ЧС осуществляются следующие мероприятия:
- принятие на себя непосредственного руководства функционированием подсистем и звеньев РСЧС, формирование при необходимости оперативных групп для выявления причин ухудшения обстановки непосредственно в районе возможного бедствия, выработки предложения по ее нормализации;
- усиление дежурно-диспетчерской службы;
- усиления наблюдения и контроля за состоянием ОПС, обстановкой на ПОО и прилегающих к ним территориях, прогнозирование возможности возникновения ЧС и их масштабов;
- принятие мер по защите населения и ОПС, обеспечение УФ ОЭ;
- приведение в состояние готовности сил и средств, уточнение планов их действий и выдвижение в предполагаемый район ЧС.
В режиме ЧС при возникновении и во время ликвидации последствий:
- выдвижение оперативных групп в район ЧС;
- определение границ зоны ЧС;
- организация защиты населения;
- организация работ по ПУФ ОЭ и отраслей экономики, обеспечение жизнедеятельности пострадавшего населения;
- осуществление непрерывного контроля за состоянием ОПС в районе ЧС, за обстановкой на аварийных объектах и прилегающих территориях.
|
Категория: Безопасность жизнедеятельности и охрана труда | Добавил: qreter |
Просмотров: 208 | Загрузок: 1 | Рейтинг: 0.0/0 |
|
|
ПОИСК ПО САЙТУ |
ВНИМАНИЕ!!!
НАСТОЯТЕЛЬНО рекомендуем Вам воспользоваться функцией "ПОИСК ПО САЙТУ", для отображения и поиска необходимого и интересующего Вас материала |
 |
ПОСЕЩЕНИЯ |
|
 |
|